CyckelLjudet & Festmaskinen at Regnbågsparaden West pride Göteborg

IMG_1012
After assembling CyckelLjudet we managed to arrive at Götaplatsen were the parade Regnbågsparaden were supposed to start.

The solar panels worked really great, we had no trouble at all and the LiPo was charged nicely.

We did use an old Sennheiser wireless transmitter to send the audio from the DJ-booth at Festmaskinen to the PA-speakers at CyckelLjudet.
We had some problems with wireless interference, but it hold up well most of the parade. Go 80’s technology!
IMG_1000 IMG_1001 IMG_1002 IMG_1003 IMG_1004 IMG_1005 IMG_1006 IMG_1007 IMG_1008 IMG_1009 IMG_1010 IMG_1011 IMG_1013 IMG_1014 IMG_1015 IMG_1016

CyckelLjudet – Attaching electronics and solar panels

IMG_0012
All pimped out and ready for the west pride parade Regnbågsparaden!

IMG_0010 IMG_0009
To be able to drive the amplifier for the speaker we use an UPS. On top of the UPS you can see the solar regulator Solar80.
The solar regulator is charging a 6S 8Ah LiPo battery pack. The solar panels will generate maximum of 600W of power, and the PA-system will draw about 65W of power, so the battery will be more of a buffer.

IMG_0011
After some spec-readings we realized that the Solar80 wouldn’t handle the maximum of 70V that the solar panels could generate, it only supported 48V. So we switched it out for Flexmax 80.
Both the controllers were designed for lead-acid battery’s and not for LiPo battery’s. I was missing a parameter to set the charge voltage, also there was software limitations that you couldn’t go around, like the charging current for example, you could only go as low as 5A.
We’re trying out the solar panels and solar regulator in the sun charging the LiPo. The stop-charing-limit was set to 25.2V which is the voltage of a maximum charged LiPo, but the solar regulator was still inputing voltage well above 25.2V because the solar regulator is designed for lead acid battery’s. We then set the maximum-charging-voltage to 24.8V that seemed to help, the voltage over the battery didn’t reached over 25.2V.

IMG_0008
Cables from the solar panels.

IMG_0007 IMG_0006
Amplifier/mixer in place, and so is the LED-bars.

IMG_0005 IMG_0004 IMG_0003 IMG_0002 IMG_0001 IMG_5570 IMG_5568 IMG_5565 IMG_5563

MonoGlasses – accessibility for people having problem with 3D-cinema


Some peoble having problems viewing 3D-cinema due to refractive errors in their eyes. Some social problems may arise because your friends want to watch a movie at 3d-cinema and you can’t.
But now you can! Introducing Mono Glasses.


Original 3D-glasses for cinema-usage.
It’s uses polarized filters to separate the left image from the right. By replacing the right filter with a left one you will have a pair of glasses that only could see the left image.
This requires you to have 2 spare 3D-glasses to remake into 2 new mono glasses.


Mark your glasses so you don’t mix them up later on.
Repeat on the other pair.


Snap the ends off.
Repeat on the other pair.


Snap the cover off will separate the glasses into two parts, exposing the two filters.
Remove one of the filters.
Repeat on the other pair.


Insert the filter from the other pair.
Repeat on the other pair.


Snap together, some glue may be required.
Repeat on the other pair.


A pair of two new mono glasses for 3D-cinema!


Do some optional branding.

go:toTrash – Live testing


Our control-input to steer the motors was through a Python-terminal


We placed a temporary emergency-stop on top of the trashcan to cut the power. In the future we will use a piezo-element to detect and trigger emergency-stop when someone is hitting the trashcan.


We did test go:toTrash inside at first to get ea feel about how the platform worked.
It worked great, so we tried to force it and learn its limits.


We also did some testing outside. go:toTrash also met a collegue on it’s way, a compression-trashcan.

We also did some testing on the paving stone, we discovered that go:toTrash were more stable on the pavement than we first thought.